Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2313297, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475975

RESUMEN

The 2D electron gas (2DEG) at oxide interfaces exhibits extraordinary properties, such as 2D superconductivity and ferromagnetism, coupled to strongly correlated electrons in narrow d-bands. In particular, 2DEGs in KTaO3 (KTO) with 5d t2g orbitals exhibit larger atomic spin-orbit coupling and crystal-facet-dependent superconductivity absent for 3d 2DEGs in SrTiO3 (STO). Herein, by tracing the interfacial chemistry, weak anti-localization magneto-transport behavior, and electronic structures of (001), (110), and (111) KTO 2DEGs, unambiguously cation exchange across KTO interfaces is discovered. Therefore, the origin of the 2DEGs at KTO-based interfaces is dramatically different from the electronic reconstruction observed at STO interfaces. More importantly, as the interface polarization grows with the higher order planes in the KTO case, the Rashba spin splitting becomes maximal for the superconducting (111) interfaces approximately twice that of the (001) interface. The larger Rashba spin splitting couples strongly to the asymmetric chiral texture of the orbital angular moment, and results mainly from the enhanced inter-orbital hopping of the t2g bands and more localized wave functions. This finding has profound implications for the search for topological superconductors, as well as the realization of efficient spin-charge interconversion for low-power spin-orbitronics based on (110) and (111) KTO interfaces.

2.
ACS Nano ; 18(12): 9232-9241, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38466082

RESUMEN

Due to the strong interlayer coupling between multiple degrees of freedom, oxide heterostructures have demonstrated exotic properties that are not shown by their bulk counterparts. One of the most interesting properties is ferromagnetism at the interface formed between "nonferromagnetic" compounds. Here we report on the interfacial ferromagnetic phase induced in the superlattices consisting of the two paramagnetic oxides CaRuO3 (CRO) and LaNiO3 (LNO). By varying the sublayer thickness in the superlattice period, we demonstrate that the ferromagnetic order has been established in both CaRuO3 and LaNiO3 sublayers, exhibiting an identical Curie temperature of ∼75 K. The X-ray absorption spectra suggest a strong charge transfer from Ru to Ni at the interface, triggering superexchange interactions between Ru/Ni ions and giving rise to the emergent ferromagnetic phase. Moreover, the X-ray linear dichroism spectra reveal the preferential occupancy of the d3z2-r2 orbital for the Ru ions and the dx2-y2 orbital for the Ni ions in the heterostructure. This leads to different magnetic anisotropy of the superlattices when they are dominated by CRO or LNO sublayers. This work clearly demonstrates a charge-transfer-induced interfacial ferromagnetic phase in the whole ferromagnet-free oxide heterostructures, offering a feasible way to tailor oxide materials for desired functionalities.

3.
Nat Commun ; 15(1): 1838, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418810

RESUMEN

Plastic crystals as barocaloric materials exhibit the large entropy change rivalling freon, however, the limited pressure-sensitivity and large hysteresis of phase transition hinder the colossal barocaloric effect accomplished reversibly at low pressure. Here we report reversible colossal barocaloric effect at low pressure in two-dimensional van-der-Waals alkylammonium halides. Via introducing long carbon chains in ammonium halide plastic crystals, two-dimensional structure forms in (CH3-(CH2)n-1)2NH2X (X: halogen element) with weak interlayer van-der-Waals force, which dictates interlayer expansion as large as 13% and consequently volume change as much as 12% during phase transition. Such anisotropic expansion provides sufficient space for carbon chains to undergo dramatic conformation disordering, which induces colossal entropy change with large pressure-sensitivity and small hysteresis. The record reversible colossal barocaloric effect with entropy change ΔSr ~ 400 J kg-1 K-1 at 0.08 GPa and adiabatic temperature change ΔTr ~ 11 K at 0.1 GPa highlights the design of novel barocaloric materials by engineering the dimensionality of plastic crystals.

4.
Nano Lett ; 24(4): 1122-1129, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38230636

RESUMEN

Magnetic proximity-induced magnetism in paramagnetic LaNiO3 (LNO) has spurred intensive investigations in the past decade. However, no consensus has been reached so far regarding the magnetic order in LNO layers in relevant heterostructures. This paper reports a layered ferromagnetic structure for the (111)-oriented LNO/LaMnO3 (LMO) superlattices. It is found that each period of the superlattice consisted of an insulating LNO-interfacial phase (five unit cells in thickness, ∼1.1 nm), a metallic LNO-inner phase, a poorly conductive LMO-interfacial phase (three unit cells in thickness, ∼0.7 nm), and an insulating LMO-inner phase. All four of these phases are ferromagnetic, showing different magnetizations. The Mn-to-Ni interlayer charge transfer is responsible for the emergence of a layered magnetic structure, which may cause magnetic interaction across the LNO/LMO interface and double exchange within the LMO-interfacial layer. This work indicates that the proximity effect is an effective means of manipulating the magnetic state and associated properties of complex oxides.

5.
Small ; : e2308172, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037707

RESUMEN

Artificial oxide heterostructures have provided promising platforms for the exploration of emergent quantum phases with extraordinary properties. One of the most interesting phenomena is the interfacial magnetism formed between two non-magnetic compounds. Here, a robust ferromagnetic phase emerged at the (111)-oriented heterointerface between paramagnetic CaRuO3 and diamagnetic SrTiO3 is reported. The Curie temperature is as high as ≈155 K and the saturation magnetization is as large as ≈1.3 µB per formula unit for the (111)-CaRuO3 /SrTiO3 superlattices, which are obviously superior to those of the (001)-oriented counterparts and are comparable to the typical itinerant ferromagnet SrRuO3 . A strong in-plane magnetic anisotropy with six-fold symmetry is further revealed by the anisotropic magnetoresistance measurements, presenting a large in-plane anisotropic field of 3.0-3.6 T. More importantly, the magnetic easy axis of the (111)-oriented superlattices can be effectively tuned from 〈 11 2 ¯ $11\overline{2}$ 1〉 to 〈 1 1 ¯ 0 $1 \bar{1}0$ 〉 directions by increasing the layer thickness of SrTiO3 . The findings demonstrate a feasible approach to enhance the interface coupling effect by varying the stacking orientation of oxide heterostructures. The tunable magnetic anisotropy also shows potential applications in low-power-consumption or exchange spring devices.

6.
Nanotechnology ; 35(9)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976545

RESUMEN

Oxide two-dimensional electron gas (2DEG) is a low-dimensional carrier system formed at the interface of oxide heterojunctions with strong and tunable Rashba spin-orbit coupling which makes oxide 2DEG an ideal platform for converting spin current and charge current. This review provides a summary of the recent advances on the 2DEGs at oxide interfaces for spin-charge interconversion. On one hand, we analyze properties and the efficiency of the spin-to-charge conversion through different ways of spin current injection. On the other hand, the conversion of charge current to spin current under different experimental methods has been summarized. These research achievements provide perspectives and methods for understanding and regulating the spin-charge interconversion of the 2DEG at the oxide interface.

7.
Adv Mater ; 35(32): e2301339, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37308132

RESUMEN

Heat current in ferromagnets can generate a transverse electric voltage perpendicular to magnetization, known as anomalous Nernst effect (ANE). ANE originates intrinsically from the combination of large Berry curvature and density of states near the Fermi energy. It shows technical advantages over the conventional longitudinal Seebeck effect in converting waste heat to electricity due to its unique transverse geometry. However, materials showing giant ANE remain to be explored. Herein,  a large ANE thermopower of Syx ≈ 2 µV K-1 at room temperature in ferromagnetic Fe3 Pt epitaxial films is reported, which also show a giant transverse thermoelectric conductivity of αyx ≈ 4 A K-1  m-1 and a remarkable coercive field of 1300 Oe. The theoretical analysis reveals that the strong spin-orbit interaction in addition to the hybridization between Pt 5d and Fe 3d electrons leads to a series of distinct energy gaps and large Berry curvature in the Brillouin zone, which is the key for the large ANE. These results highlight the important roles of both Berry curvature and spin-orbit coupling in achieving large ANE at zero magnetic field, providing pathways to explore materials with giant transverse thermoelectric effect without an external magnetic field.

8.
Nano Lett ; 23(10): 4258-4266, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37158610

RESUMEN

Magnetic skyrmions are scarcely investigated for single-crystal quality films, for which skyrmions may have a remarkable performance. Even in the limited studies in this aspect, the skyrmions are usually probed by the topological Hall effect, missing important information on dynamic properties. Here, we present a comprehensive investigation on the generation/manipulation of magnetic skyrmions in La0.67Ba0.33MnO3 single-crystal films. Using the technique of magnetic force microscopy, the current-driven skyrmion dynamics are directly observed. Unlike isolated skyrmions produced by magnetic field alone, closely packed skyrmions can be generated by electric pulses in a magnetic background, with a high density (∼60/µm2) and a small size (dozens of nanometers). The threshold current moving skyrmions is ∼2.3 × 104 A/cm2, 2-3 orders of magnitude lower than that required by metallic multilayers or van der Waals ferromagnetic heterostructures. Our work demonstrates the great potential of single-crystal oxide films in developing skyrmion-based devices.

9.
Research (Wash D C) ; 6: 0082, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36939441

RESUMEN

The discovery and study of skyrmion materials play an important role in basic frontier physics research and future information technology. The database of 196 materials, including 64 skyrmions, was established and predicted based on machine learning. A variety of intrinsic features are classified to optimize the model, and more than a dozen methods had been used to estimate the existence of skyrmion in magnetic materials, such as support vector machines, k-nearest neighbor, and ensembles of trees. It is found that magnetic materials can be more accurately divided into skyrmion and non-skyrmion classes by using the classification of electronic layer. Note that the rare earths are the key elements affecting the production of skyrmion. The accuracy and reliability of random undersampling bagged trees were 87.5% and 0.89, respectively, which have the potential to build a reliable machine learning model from small data. The existence of skyrmions in LaBaMnO is predicted by the trained model and verified by micromagnetic theory and experiments.

10.
Adv Mater ; 35(17): e2209759, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36795948

RESUMEN

Exchange bias (EB) is highly desirable for widespread technologies. Generally, conventional exchange-bias heterojunctions require excessively large cooling fields for sufficient bias fields, which are generated by pinned spins at the interface of ferromagnetic and antiferromagnetic layers. It is crucial for applicability to obtain considerable exchange-bias fields with minimum cooling fields. Here, an exchange-bias-like effect is reported in a double perovskite, Y2 NiIrO6 , which shows long-range ferrimagnetic ordering below 192 K. It displays a giant bias-like field of 1.1 T with a cooling field of only 15 Oe at 5 K. This robust phenomenon appears below 170 K. This fascinating bias-like effect is the secondary effect of the vertical shifts of the magnetic loops, which is attributed to the pinned magnetic domains due to the combination of strong spin-orbit coupling on Ir, and antiferromagnetically coupled Ni- and Ir-sublattices. The pinned moments in Y2 NiIrO6 are present throughout the full volume, not just at the interface as in conventional bilayer systems.

11.
ACS Nano ; 16(9): 14632-14643, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36107149

RESUMEN

Modifying the crystal structure and corresponding functional properties of complex oxides by regulating their oxygen content has promising applications in energy conversion and chemical looping, where controlling oxygen migration plays an important role. Therefore, finding an efficacious and feasible method to facilitate oxygen migration has become a critical requirement for practical applications. Here, we report a compressive-strain-facilitated oxygen migration with reversible topotactic phase transformation (RTPT) in La0.5Sr0.5CoOx films based on all-solid-state electrolyte gating modulation. With the lattice strain changing from tensile to compressive strain, significant reductions in modulation duration (∼72%) and threshold voltage (∼70%) for the RTPT were observed, indicating great promotion of RTPT by compressive strain. Density functional theory calculations verify that such compressive-strain-facilitated efficient RTPT comes from significant reduction of the oxygen migration barrier in compressive-strained films. Further, ac-STEM, EELS, and sXAS investigations reveal that varying strain from tensile to compressive enhances the Co 3d band filling, thereby suppressing the Co-O hybrid bond in oxygen vacancy channels, elucidating the micro-origin of such compressive-strain-facilitated oxygen migration. Our work suggests that controlling electronic orbital occupation of Co ions in oxygen vacancy channels may help facilitate oxygen migration, providing valuable insights and practical guidance for achieving highly efficient oxygen-migration-related chemical looping and energy conversion with complex oxides.

13.
Phys Rev Lett ; 128(18): 187401, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35594114

RESUMEN

Two-dimensional electron gases (2DEGs) at the LaAlO_{3}/SrTiO_{3} interface have attracted wide interest, and some exotic phenomena are observed, including 2D superconductivity, 2D magnetism, and diverse effects associated with Rashba spin-orbit coupling. Despite the intensive investigations, however, there are still hidden aspects that remain unexplored. For the first time, here we report on the circular photogalvanic effect (CPGE) for the oxide 2DEG. Spin polarized electrons are selectively excited by circular polarized light from the in-gap states of SrTiO_{3} to 2DEG and are converted into electric current via the mechanism of spin-momentum locking arising from Rashba spin-orbit coupling. Moreover, the CPGE can be effectively modified by the density and distribution of oxygen vacancies. This Letter presents an effective approach to generate and manipulate the spin polarized current, paving the way toward oxide spintronics.

14.
ACS Appl Mater Interfaces ; 14(16): 18293-18301, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35418228

RESUMEN

The cyclability and frequency dependence of the adiabatic temperature change (ΔTad) under an alternating magnetic field (AMF) are significantly important from the viewpoint of refrigeration application. Our studies demonstrated, by direct measurements, that the cyclability and low-magnetic-field performance of ΔTad in FeRh alloys can be largely enhanced by introducing second phases. The ΔTad under a 1.8 T, 0.13 Hz AMF is reduced by 14%, which is much better than that (40-50%) of monophase FeRh previously reported. More importantly, the introduction of second phases enables the antiferromagnetic-ferromagnetic phase transition to be driven by a lower magnetic field. Thus, ΔTad is significantly enhanced under a 0.62 T, 1 Hz AMF, and its value is 70% larger than that of monophase FeRh previously reported. Although frequency dependence of ΔTad occurs, the specific cooling power largely increases by 11 times from 0.17 to 1.9 W/g, as the frequency increases from 1 to 18.4 Hz under an AMF of 0.62 T. Our analysis of the phase transition dynamics based on magnetic relaxation measurements indicates that the activation energy barrier is lowered owing to the existence of second phases in FeRh alloys, which should be responsible for the reduction of the driving field. This work provides an effective way to enhance the cyclability and low-magnetic-field performance of ΔTad under an AMF in FeRh alloys by introducing second phases.

15.
ACS Nano ; 16(4): 6437-6443, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35312282

RESUMEN

The electronic structure as well as the mechanism underlying the high-mobility two-dimensional electron gases (2DEGs) at complex oxide interfaces remain elusive. Herein, using soft X-ray angle-resolved photoemission spectroscopy (ARPES), we present the band dispersion of metallic states at buffered LaAlO3/SrTiO3 (LAO/STO) heterointerfaces where a single-unit-cell LaMnO3 (LMO) spacer not only enhances the electron mobility but also renders the electronic structure robust toward X-ray radiation. By tracing the evolution of band dispersion, orbital occupation, and electron-phonon interaction of the interfacial 2DEG, we find unambiguous evidence that the insertion of the LMO buffer strongly suppresses both the formation of oxygen vacancies as well as the electron-phonon interaction on the STO side. The latter effect makes the buffered sample different from any other STO-based interfaces and may explain the maximum mobility enhancement achieved at buffered oxide interfaces.

16.
ACS Appl Mater Interfaces ; 14(14): 16928-16938, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35353496

RESUMEN

Developing atomic-scale synthesis control is a prerequisite for understanding and engineering the exotic physics inherent to transition-metal oxide heterostructures. Thus, far, however, the number of materials systems explored has been extremely limited, particularly with regard to the crystalline substrate, which is routinely SrTiO3. Here, we investigate the growth of a rare-earth nickelate─LaNiO3─on (LaAlO3)(Sr2AlTaO6) (LSAT) (001) by oxide molecular beam epitaxy (MBE). Whereas the LSAT substrates are smooth, they do not exhibit the single surface termination usually assumed necessary for control over the interface structure. Performing both nonresonant and resonant anomalous in situ synchrotron surface X-ray scattering during MBE growth, we show that reproducible heterostructures can be achieved regardless of both the mixed surface termination and the layer-by-layer deposition sequence. The rearrangement of the layers occurs dynamically during growth, resulting in the fabrication of high-quality LaNiO3/LSAT heterostructures with a sharp and consistent interfacial structure. This is due to the thermodynamics of the deposition window as well as the nature of the chemical species at interfaces─here, the flexible charge state of nickel at the oxide surface. This has important implications regarding the use of a wider variety of substrates for fundamental studies on complex oxide synthesis.

17.
Mater Horiz ; 8(12): 3468-3476, 2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34766611

RESUMEN

Heterostructures composed of dissimilar oxides with different properties offer opportunities to develop emergent devices with desired functionalities. A key feature of oxide heterostructures is interface electronics and orbital reconstructions. Here, we combined infinite-layered SrCuO2 and perovskite SrRuO3 into heterostructures. A rare high spin state as large as 3.0 µB f.u-1 and an increase in Curie temperature by 12 K are achieved in an ultrathin SrRuO3 film capped by a SrCuO2 layer. Atomic-scale lattice imaging shows the uniform CuO2-plane-to-RuO5-pyramid connection at the interface, where the regularly arranged RuO5 pyramids were elongated along the out-of-plane direction. As revealed by theoretical calculations and spectral analysis, these features finally result in an abnormally high spin state of the interfacial Ru ions with highly polarized eg orbitals. The present work demonstrates that oxygen coordination engineering at the infinite-layer/perovskite oxide interface is a promising approach towards advanced oxide electronics.

18.
J Phys Condens Matter ; 34(3)2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34663765

RESUMEN

Heterointerfaces sandwiched by oxides of dissimilar crystal structures will show strong interface reconstruction, leading to distinct interfacial effect arising from unusual physics. Here, we present a theoretical investigation on the interfaces between infinite-layer oxide and perovskite oxide (SrCuO2/SrTiO3and SrCuO2/KTaO3). Surprisingly, we found well-defined two-dimensional electron gas (2DEG), stemming from atomic reconstruction and polar discontinuity at interface. Moreover, the 2DEG resides in both the TiO2and CuO2interfacial layers, unlike LaAlO3/SrTiO3for which 2DEG exists only in the TiO2interfacial layer. More than that, no metal-to-insulator transition is observed as the SrCuO2layer thickness decreases to one unit cell, i.e., the metallicity of the new interface is robust. Further investigations show more unique features of the 2DEG. Due to the absence of apical oxygen at the SrCuO2/SrTiO3(KTaO3) interface, the conducting states in the interface TiO2(TaO2) layer follows thedxy

19.
Adv Mater ; 33(40): e2103751, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34402532

RESUMEN

Particle-like magnetic textures with nanometric sizes, such as skyrmions, are potentially suitable for designing high-efficiency information bits in future spintronics devices. In general, the Dzyaloshinskii-Moriya interactions and dipolar interactions are the dominant factors for generating nonlinear spin configurations. However, to stabilize the topological skyrmions, an external magnetic field is usually required. In this study, the spontaneous emergence of skyrmions is directly observed, together with the unique successive topological domain evolution during the spin reorientation transition in a neodymium-cobalt (NdCo5 ) rare-earth magnet. On decreasing the temperature, nanometric skyrmion lattices evolve into enclosed in-plane domains (EIPDs) similar to mini bar-magnets with size below 120 nm. The internal magnetization rotates with magnetic anisotropy, demonstrating the ability to manipulate the mini bar-magnets. The nanoscale EIPD lattices remain robust over the wide temperature range of 241-167 K, indicating the possibility of high-density in-plane magnetic information storage. The generation of spontaneous magnetic skyrmions and the successive domain transformation in the traditional NdCo5 rare-earth magnet may prompt application exploration for topological magnetic spin textures with novel physical mechanisms in versatile magnets.

20.
ACS Appl Mater Interfaces ; 13(24): 28442-28450, 2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34105344

RESUMEN

The realization of a large low-field magnetoresistance (LFMR) effect in free-standing magnetic oxide films is a crucial goal toward promoting the development of flexible, low power consumption, and nonvolatile memory devices for information storage. La0.7Sr0.3MnO3 (LSMO) is an ideal material for spintronic devices due to its excellent magnetic and electronic properties. However, it is difficult to achieve both a large LFMR effect and high flexibility in LSMO films due to the lack of research on LFMR-related mechanisms and the strict LSMO growth conditions, which require rigid substrates. Here, we induced a large LFMR effect in an LSMO/mica heterostructure by utilizing a disorder-related spin-polarized tunneling effect and developed a simple transfer method to obtain free-standing LSMO films for the first time. Electrical and magnetic characterizations of these free-standing LSMO films revealed that all of the principal properties of LSMO were sustained under compressive and tensile conditions. Notably, the magnetoresistance of the processed LSMO film reached up to 16% under an ultrasmall magnetic field (0.1 T), which is 80 times that of a traditional LSMO film. As a demonstration, a stable nonvolatile multivalue storage function in flexible LSMO films was successfully achieved. Our work may pave the way for future wearable resistive memory device applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...